Riemannian Supergeometry
نویسنده
چکیده
Motivated by Zirnbauer [Zir 1996], we develop a theory of Riemannian supermanifolds up to a definition of Riemannian symmetric superspaces. Various fundamental concepts needed for the study of these spaces both from the Riemannian and the Lie theoretical viewpoint are introduced, e.g. geodesics, isometry groups and invariant metrics on Lie supergroups and homogeneous superspaces.
منابع مشابه
A Categorical Formulation of Superalgebra and Supergeometry
We reformulate superalgebra and supergeometry in completely categorical terms by a consequent use of the functor of points. The increased abstraction of this approach is rewarded by a number of great advantages. First, we show that one can extend supergeometry completely naturally to infinite-dimensional contexts. Secondly, some subtle and sometimes obscure-seeming points of supergeometry becom...
متن کاملON THE LIFTS OF SEMI-RIEMANNIAN METRICS
In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...
متن کاملACTION OF SEMISIMPLE ISOMERY GROUPS ON SOME RIEMANNIAN MANIFOLDS OF NONPOSITIVE CURVATURE
A manifold with a smooth action of a Lie group G is called G-manifold. In this paper we consider a complete Riemannian manifold M with the action of a closed and connected Lie subgroup G of the isometries. The dimension of the orbit space is called the cohomogeneity of the action. Manifolds having actions of cohomogeneity zero are called homogeneous. A classic theorem about Riemannian manifolds...
متن کاملIntroduction to supergeometry
These notes are based on a series of lectures given by the first author at the school of ‘Poisson 2010’, held at IMPA, Rio de Janeiro. They contain an exposition of the theory of superand graded manifolds, cohomological vector fields, graded symplectic structures, reduction and the AKSZ-formalism.
متن کاملQuotients in supergeometry
The purpose of this paper is to present the notion of quotient of supergroups in different categories using the unified treatment of the functor of points and to examine some physically interesting examples.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006